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Asymmetric unimodal maps: Some results fromg-generalized bit cumulants
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In this study, using}-generalized bit cumulantg|(is the nonextensivity parameter of the recently introduced

Tsallis statistics we investigate the asymmetric unimodal maps,=1—a|x,|% (i=1,2 correspond to;

>0 andx,<0, respectivelyz;>1, 0<a<2,t=0,1,2...). Thestudy of theg-generalized second cumulant
C{® of these maps allows us to determine the dependence of the nonextensivity parporetae inflection
parameter pairsz{,z,). The slope of theC{? versusC§" plot (whereC$" is the standard second cumulgant
provides the necessary tool to accomplish this task. The slope behaves exactly the same as the/phuogeer
(sayqg*) that were obtained for logisticlike mapg,& z,=z) by Costaet al. [Phys. Rev. B56, 245 (1997)].

It appears that as,— z;— = this slope approaches unity. This behavior is very similar to the behavipf of
as a function of the inflection parameter for som@ependent maps; namely, as>e, q* approaches 1.

PACS numbegps): 05.45—a, 05.20-y, 05.70.Ce

In recent years, the sensitivity to initial conditions of non- conditions. This kind of power-law behavior was observed
linear dynamical systems has been studied with increasingreviously in[11]. At the onset of chaog(t) presents strong
interest. As examples, dissipative systems of low-fluctuations with time, reflecting the fractal-like structure of
dimensional map§l—4], self-organized criticality5], sym-  the critical attractor, and Eq(3) delimits the power-law
bolic sequencef6] and conservative systems of long-rangedgrowth of the upper bounds &f(t). [Of course, if we had
many-body Hamiltoniang7,8], and low-dimensional conser- chosenx, different from 0, but still on the attractor, we
vative mapg9] can be enumerated. We focus here on onewould have seen a differemf(t), but it still fluctuates simi-
dimensional dissipative maps. As is well known, to investi-larly.] These upper boundg¢t'/*~9)) allow us to calculate
gate the sensitivity to initial conditions of any kind of one- a single value of| (sayq*) for the map under consideration.
dimensional map at the onset of chaos, it is possible tdhis method of finding numerical values of has been

introduce successfully used for the logistic mép], a family of logis-
ticlike maps[2], the circle mag 3], and a family of circular-

£0= lim Ax(t) D like maps[4]. Besides this method, another one has been
ax(0)-0AX(0)’ developed by Lyra and Tsallig3] by looking at the geo-

metrical aspects of dynamical attractors at the threshold of

whereAx(0) andAx(t) are discrepancies of the initial con- chaos. Using the multifractal singularity spectriita) [12],
ditions at times 0 andl (Here it is worth mentioning that in they proposed the scaling relation

generalx; is a function of timej, and initial positionx,, but

since we shall be interested in dissipative maps in this study,

it is essentially included in the attractor. Moreover, in our 1 1 _ 1 (4
calculations, we choosg,=0 which belongs to the attrac- 1-g* Qmin  ®max

tor) In general, £(t) satisfies the differential equation

dé/dt=\,¢; thus

wherea .y (amin) IS the most rarefie(concentratedregion
E(t)=eM, (2)  of the multifractal singularity spectrum of the attractor. This
relation presents the second method of calculatinggthe
where) ; is the Lyapunov exponent. However, for the mar- values once the scaling properties of the dynamical attractor

ginal casex; =0, it satisfiesdé/dt=\4£9; thus are known. Here we should mention that the present imgex
is not the same as the parameteof Ref.[12], which is a
) =[1+(1-art]" " D(geR), (3)  free parameter used to probe the multifractals using general-

ized Renyi entropies. It is also worth noting that the nonex-
which recovers the standard casemely, Eq.(2)] for g  tensive Tsallis entropy is completely different from the Re-
— 1. (Although in principleq is allowed to be any real num- nyi entropy in the sense that the former has definite
ber, for the one-dimensional maps studied so far, we see thabncavity for all values of}, whereas the latter does not. For
g is below unity) Here,q is the nonextensivity parameter of example, it was very recently shown|[ib3,14 that the time
the recently introduced Tsallis statistick0] and forq#1 it evolution of the Tsallis entropy can be linear for one and
is evident that Eq(3) yields apower-lawsensitivity to initial  only one value of theg index for a given value of the inflec-

tion numberz, which coincides with thg* values calculated

from the above-mentioned two methods, whereas this is in

*Email address: tirnakli@sci.ege.edu.tr general false for Renyi entropies.
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FIG. 1. The scaling between the standard second cum@igtht FIG. 2. The behavior of the slope &% vs C{¥ as a function

and the generalized second cumul@fft’ for a representative value of g index for a representative value af;(z,) pairs.
of (z,,2,) pairs.
eter pair @;,z,). The problem of the first method might

It has already been shown that for all the above-originate from prediction of the criticah, values at the
mentioned one-dimensional dissipative maps the values afhaos threshold with enough precision, whereas the problem
g* calculated within these two different methods are theof the second method might be related to the numerical pro-
same(within a good precisionfor any given value of the cedure used to estimate théx) curve, whose most rarefied
inflection parameter of the map usedfor example, for the  region (a4, is usually poorly sampled. Another possible
logisticlike mapsx;  ;=1—ax{, z>1). In addition to this, fact that might cause our attempts to fail is the nonuniversal
other important information that comes from all these report$ehavior of this subclass of AUMs as reported16,17] (for
is the determination of the behavior qf as a function of example, it is shown that these maps fail to exhibit the metric
the inflection parametez As can be seen from Fig. 2 §2] universality of Feigenbaum Since values ofg* are not
and from the table of4], it seems that, whez—, gq* available for this subclass of AUMSs, clearly it is not possible
approaches unity(In fact, it has been showfi5] that as- to see the behavior af* as a function of theZ;,z,) pairs
ymptotically theq* values saturate before unity. by using the above-mentioned two methods. In this paper, in

The purpose of this paper is to show numerically whetheorder to see this behavior, without finding the precise values
such behavior is satisfied for asymmetric unimodal map®»f g* for (z;,z,) pairs, we use another technique based on

(AUMs) the very recent generalization of bit cumulants for chaotic
1—-alx/|? if x=0 1.80 T— 5 :
Xt+1= 1-alx|? if x=0, (5) 175 - ) (z;.2) . : 2.z,)
1.70 - @ "ve G2
where z; ,>1, 0<as<2, —1sx=1, andt=0,12.... 1.65
Unimodal maps have been studying intensively for the last 160 4 ms v°
two decades and some of the important work can be enumer- ’
ated as follows: the investigation of nonuniversal behavior o 1% 7 N v
[16,17), scaling and multifractality propertigd8], Feigen- & 1.50 - . v
baum theory[19,20, continuous invariant probability mea- R : ¢
sures [21], complexity properties[22], and analysis of -t o
Feigenbaum attractof3], among other$24,25. Although 1407 . Vv ¢
all this and related work has provided a very good under- 1.35 4 gat ‘e
standing of the dynamics of unimodal maps, up to now there 1.30 4
has been no attempt to relate the class of maps defined by 105
Eq. (5) to the nonextensivity parametgiof Tsallis statistics, ’

as has already been done for other map famijliesd]. This 1.20 T T T T T T T T T 1

will be the main goal of the present effort. )
In fact, for the maps given in Ed5), unfortunately, the

use of the two methods described above seems harder than

usual[26]. Hence, we were not able to find satisfactory re-  FIG. 3. The behavior of the slope 6" vs C{ as a function

sults for the prediction of* values of any inflection param- of z,—z, values for a family of four different#;,z,) pairs.
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systems within Tsallis statisti¢27,28. To explain this tech-
nique, let us recall the main results [&7,28. The general-
ized second cumularior heat capacityis given by

q
(q—1)?

wherep is the natural invariant densifi29]. As g—1, we
have

ci= [(p*™Hy—(p9?], (6)

cM=((Inp)%—(Inp)2, 7

ASYMMETRIC UNIMODAL MAPS: SOME RESULTS. ..

7859

behavior of this slope as a function dof,(z,) pairs and this
allows us to estimate the dependence of d¢ffevalues to
(z1,2,) pairs without knowing the exact values of dor
these pairs. Figure 3 represents this behavior for the
(2,2,),(21,2),(37,), and (z;,3) cases. It seems from the fig-
ure that asz,—z;— = the above-mentioned slop@nd
thus theq* index) approaches unity. This tendency is exactly
the same as that observed for a family of logisticlike maps
[2] and a family of circularlike mapp4], namely, asz— o,
g* approaches unity.

Summing up, for the first timéo the best of our knowl-
edge, we managed to study the asymmetric unimodal map

which is equivalent to the standard definition of the secondiefined in Eq.(5) in such a way that it became possible to

cumulant[29,30. It has been show[27,2§ that there is a
kind of scaling betwee{" andC{ that is evident from a

relate it with the nonextensivity parametgof Tsallis statis-
tics. By studying the behavior of another paramétehnich

c vs C plot, where it is easily seen that most of the Pehaves the same as thg' valueg coming from the
points can be fitted to a straight line. The slope of this lined-9&neralized bit cumulants, we were able to show that the

gives the scaling factor betwe@i? andC{¥ and also pro-
vides us a tool to fulfill our aim in this paper. In Fig. 1, w
illustrate this slope plotting=$" vs C{¥ curve for a repre-

sentative ¢,,z,) pair. It is evident that most of the data
points fall onto a straight line which yields a well-defined
slope[in fact, we found that a few points deviate from this
straight line especially when the value of the inflection pa
rameter starts to be very different from the standard cas
(namely,z,;=2,), but since such data points are very few,
we prefer to calculate the slope using a linear regression
with an error of=0.01 for each estimation of the slope—to

data points which fall onto this straight liheAs is evident
from Fig. 2, wheng— 1, naturallyC{¥—C{") and thus the

slope of theCS" vs C{¥ plot also tends to unity for any
inflection pair. Although in g-generalized bit cumulant

dependence of thg* index on the inflection parameter pairs

e (21,2;) of these maps appears to be very similar to that

observed for other one-dimensional maps reported so far.
Although a clear understanding of this point will be available
only after determination of the exact valuesydffor (z;,z,)

pairs, which is still lacking, we hope that the present work
will be considered as a first attempt in this line and will
gccelarate other studies, since it seems from the results of the
present effort that this subclass of AUMs have differgiit
values for different £, ,z,) pairs. In order to verify this, as

already addressed in the literature for other mgp$3,14,

the study of the entropy increase at the edge of chaos for this
kind of AUM would be a good candidate, and is no doubt
worth investigating.
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