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Asymmetric unimodal maps: Some results fromq-generalized bit cumulants
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In this study, usingq-generalized bit cumulants (q is the nonextensivity parameter of the recently introduced
Tsallis statistics!, we investigate the asymmetric unimodal mapsxt11512auxtuzi ( i 51,2 correspond toxt

.0 andxt,0, respectively;zi.1, 0,a<2, t50,1,2, . . . ). Thestudy of theq-generalized second cumulant
C2

(q) of these maps allows us to determine the dependence of the nonextensivity parameterq on the inflection
parameter pairs (z1 ,z2). The slope of theC2

(q) versusC2
(1) plot ~whereC2

(1) is the standard second cumulant!
provides the necessary tool to accomplish this task. The slope behaves exactly the same as the properq values
~sayq* ) that were obtained for logisticlike maps (z15z25z) by Costaet al. @Phys. Rev. E56, 245 ~1997!#.
It appears that asz22z1→6` this slope approaches unity. This behavior is very similar to the behavior ofq*
as a function of the inflection parameter for somez-dependent maps; namely, asz→`, q* approaches 1.

PACS number~s!: 05.45.2a, 05.20.2y, 05.70.Ce
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In recent years, the sensitivity to initial conditions of no
linear dynamical systems has been studied with increa
interest. As examples, dissipative systems of lo
dimensional maps@1–4#, self-organized criticality@5#, sym-
bolic sequences@6# and conservative systems of long-rang
many-body Hamiltonians@7,8#, and low-dimensional conser
vative maps@9# can be enumerated. We focus here on o
dimensional dissipative maps. As is well known, to inves
gate the sensitivity to initial conditions of any kind of on
dimensional map at the onset of chaos, it is possible
introduce

j~ t !5 lim
Dx(0)→0

Dx~ t !

Dx~0!
, ~1!

whereDx(0) andDx(t) are discrepancies of the initial con
ditions at times 0 andt. ~Here it is worth mentioning that in
generalxi is a function of time,i, and initial positionx0, but
since we shall be interested in dissipative maps in this stu
it is essentially included in the attractor. Moreover, in o
calculations, we choosex050 which belongs to the attrac
tor.! In general, j(t) satisfies the differential equatio
dj/dt5l1j; thus

j~ t !5el1t, ~2!

wherel1 is the Lyapunov exponent. However, for the ma
ginal casel150, it satisfiesdj/dt5lqjq; thus

j~ t !5@11~12q!lqt#1/(12q)~qPR!, ~3!

which recovers the standard case@namely, Eq.~2!# for q
→1. ~Although in principleq is allowed to be any real num
ber, for the one-dimensional maps studied so far, we see
q is below unity.! Here,q is the nonextensivity parameter o
the recently introduced Tsallis statistics@10# and forqÞ1 it
is evident that Eq.~3! yields apower-lawsensitivity to initial
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conditions. This kind of power-law behavior was observ
previously in@11#. At the onset of chaos,j(t) presents strong
fluctuations with time, reflecting the fractal-like structure
the critical attractor, and Eq.~3! delimits the power-law
growth of the upper bounds ofj(t). @Of course, if we had
chosenx0 different from 0, but still on the attractor, w
would have seen a differentxi(t), but it still fluctuates simi-
larly.# These upper bounds (j}t1/„12q)… allow us to calculate
a single value ofq ~sayq* ) for the map under consideration
This method of finding numerical values ofq* has been
successfully used for the logistic map@1#, a family of logis-
ticlike maps@2#, the circle map@3#, and a family of circular-
like maps @4#. Besides this method, another one has be
developed by Lyra and Tsallis@3# by looking at the geo-
metrical aspects of dynamical attractors at the threshold
chaos. Using the multifractal singularity spectrumf (a) @12#,
they proposed the scaling relation

1

12q*
5

1

amin
2

1

amax
, ~4!

whereamax (amin) is the most rarefied~concentrated! region
of the multifractal singularity spectrum of the attractor. Th
relation presents the second method of calculating theq*
values once the scaling properties of the dynamical attra
are known. Here we should mention that the present indeq
is not the same as the parameterq of Ref. @12#, which is a
free parameter used to probe the multifractals using gene
ized Renyi entropies. It is also worth noting that the none
tensive Tsallis entropy is completely different from the R
nyi entropy in the sense that the former has defin
concavity for all values ofq, whereas the latter does not. F
example, it was very recently shown in@13,14# that the time
evolution of the Tsallis entropy can be linear for one a
only one value of theq index for a given value of the inflec
tion numberz, which coincides with theq* values calculated
from the above-mentioned two methods, whereas this is
general false for Renyi entropies.
7857 ©2000 The American Physical Society
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It has already been shown that for all the abov
mentioned one-dimensional dissipative maps the value
q* calculated within these two different methods are
same~within a good precision! for any given value of the
inflection parameterz of the map used~for example, for the
logisticlike mapsxi 11512axi

z , z.1). In addition to this,
other important information that comes from all these repo
is the determination of the behavior ofq* as a function of
the inflection parameterz. As can be seen from Fig. 2 of@2#
and from the table of@4#, it seems that, whenz→`, q*
approaches unity.~In fact, it has been shown@15# that as-
ymptotically theq* values saturate before unity.!

The purpose of this paper is to show numerically whet
such behavior is satisfied for asymmetric unimodal m
~AUMs!

xt115H 12auxtuz1 if xt>0

12auxtuz2 if xt<0,
~5!

where z1,2.1, 0,a<2, 21<xt<1, and t50,1,2, . . . .
Unimodal maps have been studying intensively for the
two decades and some of the important work can be enum
ated as follows: the investigation of nonuniversal behav
@16,17#, scaling and multifractality properties@18#, Feigen-
baum theory@19,20#, continuous invariant probability mea
sures @21#, complexity properties@22#, and analysis of
Feigenbaum attractors@23#, among others@24,25#. Although
all this and related work has provided a very good und
standing of the dynamics of unimodal maps, up to now th
has been no attempt to relate the class of maps define
Eq. ~5! to the nonextensivity parameterq of Tsallis statistics,
as has already been done for other map families@1–4#. This
will be the main goal of the present effort.

In fact, for the maps given in Eq.~5!, unfortunately, the
use of the two methods described above seems harder
usual@26#. Hence, we were not able to find satisfactory
sults for the prediction ofq* values of any inflection param

FIG. 1. The scaling between the standard second cumulantC2
(1)

and the generalized second cumulantC2
(q) for a representative value

of (z1 ,z2) pairs.
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eter pair (z1 ,z2). The problem of the first method migh
originate from prediction of the criticalac values at the
chaos threshold with enough precision, whereas the prob
of the second method might be related to the numerical p
cedure used to estimate thef (a) curve, whose most rarefie
region (amax) is usually poorly sampled. Another possib
fact that might cause our attempts to fail is the nonuniver
behavior of this subclass of AUMs as reported in@16,17# ~for
example, it is shown that these maps fail to exhibit the me
universality of Feigenbaum!. Since values ofq* are not
available for this subclass of AUMs, clearly it is not possib
to see the behavior ofq* as a function of the (z1 ,z2) pairs
by using the above-mentioned two methods. In this pape
order to see this behavior, without finding the precise val
of q* for (z1 ,z2) pairs, we use another technique based
the very recent generalization of bit cumulants for chao

FIG. 2. The behavior of the slope ofC2
(1) vs C2

(q) as a function
of q index for a representative value of (z1 ,z2) pairs.

FIG. 3. The behavior of the slope ofC2
(1) vs C2

(q) as a function
of z22z1 values for a family of four different (z1 ,z2) pairs.
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systems within Tsallis statistics@27,28#. To explain this tech-
nique, let us recall the main results of@27,28#. The general-
ized second cumulant~or heat capacity! is given by

C2
(q)5

q

~q21!2
@^r2q21&2^rq&2#, ~6!

wherer is the natural invariant density@29#. As q→1, we
have

C2
(1)5^~ ln r!2&2^ ln r&2, ~7!

which is equivalent to the standard definition of the seco
cumulant@29,30#. It has been shown@27,28# that there is a
kind of scaling betweenC2

(1) andC2
(q) that is evident from a

C2
(1) vs C2

(q) plot, where it is easily seen that most of th
points can be fitted to a straight line. The slope of this l
gives the scaling factor betweenC2

(1) andC2
(q) and also pro-

vides us a tool to fulfill our aim in this paper. In Fig. 1, w
illustrate this slope plottingC2

(1) vs C2
(q) curve for a repre-

sentative (z1 ,z2) pair. It is evident that most of the dat
points fall onto a straight line which yields a well-define
slope@in fact, we found that a few points deviate from th
straight line especially when the value of the inflection p
rameter starts to be very different from the standard c
~namely,z15z2), but since such data points are very fe
we prefer to calculate the slope using a linear regressio
with an error of60.01 for each estimation of the slope—
data points which fall onto this straight line#. As is evident
from Fig. 2, whenq→1, naturallyC2

(q)→C2
(1) and thus the

slope of theC2
(1) vs C2

(q) plot also tends to unity for any
inflection pair. Although in q-generalized bit cumulan
theoryq is a free parameter, the above-mentioned slope c
stitutes another parameter that behaves exactly the sam
q* since it is evident that whenq→1 naturallyq* values
also tend linearly to unity. Therefore, now we can check
ns

s

d

e

-
e

,

n-
as

e

behavior of this slope as a function of (z1 ,z2) pairs and this
allows us to estimate the dependence of theq* values to
(z1 ,z2) pairs without knowing the exact values of q* for
these pairs. Figure 3 represents this behavior for
(2,z2),(z1,2),(3,z2), and (z1,3) cases. It seems from the fig
ure that asz22z1→6` the above-mentioned slope~and
thus theq* index! approaches unity. This tendency is exac
the same as that observed for a family of logisticlike ma
@2# and a family of circularlike maps@4#, namely, asz→`,
q* approaches unity.

Summing up, for the first time~to the best of our knowl-
edge!, we managed to study the asymmetric unimodal m
defined in Eq.~5! in such a way that it became possible
relate it with the nonextensivity parameterq of Tsallis statis-
tics. By studying the behavior of another parameter~which
behaves the same as theq* values! coming from the
q-generalized bit cumulants, we were able to show that
dependence of theq* index on the inflection parameter pai
(z1 ,z2) of these maps appears to be very similar to t
observed for other one-dimensional maps reported so
Although a clear understanding of this point will be availab
only after determination of the exact values ofq* for (z1 ,z2)
pairs, which is still lacking, we hope that the present wo
will be considered as a first attempt in this line and w
accelarate other studies, since it seems from the results o
present effort that this subclass of AUMs have differentq*
values for different (z1 ,z2) pairs. In order to verify this, as
already addressed in the literature for other maps@9,13,14#,
the study of the entropy increase at the edge of chaos for
kind of AUM would be a good candidate, and is no dou
worth investigating.
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